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Abstract

The novelty of this paper is the use of two variable refined plate theory for free vibration analysis of plate. Unlike any

other theory, the theory is variationally consistent and gives two governing equations, which are only inertially coupled

and there is no elastic coupling at all. Number of unknown functions involved is only two, as against three in case of

Mindlin’s theory. The theory has strong similarity with classical plate theory in many aspects. The theory does not require

shear correction factor and transverse shear stress variation is parabolic across the thickness. Simple variant of the theory

is also presented.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

It is now well known that for vibration analysis of plates, shear deformation effects become important
particularly for thick plates or even for thin plates vibrating at higher modes. As classical plate theory (CPT)
does not take into account shear effects, many theories have evolved to address the deficiency.

It is worthwhile to note some developments in the plate theory.
Reissner [1,2] was the first to develop a theory which incorporates the effect of shear. Reissner used stress

based approach. Later, while at the same level of approximation, Mindlin [3] employed displacement based
approach. As per Mindlin’s theory, transverse shear stress is assumed to be constant through the thickness of
the plate, but this violates the shear stress free surface conditions. Mindlin’s theory satisfies constitutive
relations for transverse shear stresses and shear strains in an approximate manner by way of using
shear correction factor. A good discussion about Reissner’s and Mindlin’s theories is available in a paper by
Wang et al. [4].

Librescu’s [5] approach makes the use of weighted lateral displacement. Constitutive relations between shear
stress and shear strain are satisfied. Reissner’s formulation comes out as a special case of Librescu’s [5]
approach.

Donnell’s [6] approach is to make correction to the classical plate deflections. Donnell assumes uniform
distribution of shear force across the thickness of the plate, and, to rectify the effects of the assumption,
introduces a numerical factor, which needs to be adjusted.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a length of a plate in x-direction
b width of a plate in y-direction
D plate rigidity
E modulus of elasticity of plate material
G shear modulus of plate material
h thickness of a plate
m; n integers, can have values from 1, 2 to

. . .1
Mx;My;Mxy moments due to stresses sx, sy and

txy, respectively
Qx;Qy shear forces due to stresses tzx and tyz,

respectively
t time variable
t1; t2 values of time variable at the start and

end of time interval (in the context of
Hamilton’s principle), respectively

T kinetic energy
u; v;w displacements in x, y, and z directions,

respectively
ub; vb;wb bending components of displacements

u, v and w, respectively

us; vs;ws shear components of displacements u, v

and w, respectively
U strain energy
W bmn

;W smn
constants associated with mode

shapes
x; y; z Cartesian coordinates
0–x–y–zright-handed Cartesian coordinate sys-

tem
amn non-dimensional term associated with

each m and n

gxy, gyz, gzx shear strains
d symbol representing variational operator
�x, �y, �znormal strains
m Poisson’s ratio of plate material
r mass per unit volume of plate material
sx, sy, sz normal stresses
txy, tyz, tzx shear stresses
omn circular frequency of vibration of plate
omn non-dimensional frequency of plate,

omnh
ffiffiffiffiffiffiffiffiffi
r=G

p
r2 Laplace operator in two (i.e. x and y)

dimensions
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Levinson’s formulation [7] is based on displacement approach and his theory does not requires shear
correction factor. The governing equations for the motion of a plate obtained by Levinson’s approach are
same as those obtained by Mindlin’s theory, provided that the shear coefficient value associated with the
Mindlin’s theory is taken as 5

6
.

Some important higher-order theories are available in the literature e.g., theories by Murty [8] with 5, 7,
9, . . . unknowns; Lo et al. [9] with 11 unknowns; Kant [10] with six unknowns; Bhimaraddi and Stevens [11]
with five unknowns; Reddy [12] with five unknowns; Soldatos [13] with three unknowns; Reddy [14] with
eight unknowns; Hanna and Leissa [15] with four unknowns.

It is important to note that Srinivas et al. [16] have carried out a three-dimensional linear, small deformation
theory of elasticity solution for the free vibration of simply-supported, homogeneous, isotropic, thick
rectangular plates.

A critical review of plate theories is given by Vasil’ev [17]. Whereas Liew et al. [18] surveyed plate theories
particularly applied to thick plate vibration problem. A recent review paper is by Ghugal and Shimpi [19].

It is to be noted that Shimpi [20] presented a theory for isotropic plates. In Ref. [20], the theory was applied
to flexure of shear-deformable isotropic plates. The theory using only two unknown functions gave rise to two
governing equations, which were uncoupled. Also, unlike many other theories, the theory has strong
similarities with the CPT in some aspects. In this paper, the theory has been extended for free vibrations of
isotropic plate.

The proposed refined plate theory (RPT) utilizes two components for representing transverse displacement,
viz. bending component and shear component. The concept of bending component and shearing component
exists in literature for beams in Refs. [21–24].

Anderson [21] and Miklowitz [22] deal with the first-order shear deformable beam theory. They proposed a
method based on breakdown of the total deflection into its bending and shear components, for deriving the
dynamic solutions of Timoshenko beam theory, to get more convenient form of governing equations.

Further Plantema [25] applied similar approach for analysis of sandwich plates, however, the method used
was variationally inconsistent.



ARTICLE IN PRESS
R.P. Shimpi, H.G. Patel / Journal of Sound and Vibration 296 (2006) 979–999 981
It is to be noted that, the aforementioned theories for beams [21,22] and for plates [25], assume that
transverse shear stress is constant through the thickness of the plate.

Senthilnathan et al. [26] proposed a higher-order shear deformable theory using similar approach of
representing transverse displacement using two components.

The proposed theory is variationally consistent and gives two governing equations, which are only inertially
coupled and there is no elastic coupling at all. The theory has strong similarity with CPT in many aspects. The
theory and its simple variant is discussed further.

2. Plate under consideration

Consider a plate (of length a, width b, and thickness h) of a homogeneous isotropic material. The plate
occupies (in 0–x–y–z right-handed Cartesian coordinate system) a region

0pxpa; 0pypb; �h=2pzph=2. (1)

The plate can have any meaningful boundary conditions at edges x ¼ 0, a and y ¼ 0, b. The density of the
plate material is r. The modulus of elasticity E, shear modulus G, and Poisson’s ratio m of the plate material
are related by G ¼ E=½2ð1þ mÞ�.

3. RPT for plate vibration

3.1. Assumptions of RPT

Assumptions of RPT would be as follows:
1.
 The displacements (u in x-direction, v in y-direction, w in z-direction) are small in comparison with the plate
thickness and, therefore, strains involved are infinitesimal.
As a result, normal strains �x, �y, �z and shear strains gxy, gyz, gzx can be expressed in terms of displacements
u, v, w by using strain–displacement relations:

�x ¼
qu

qx
; �y ¼

qv

qy
; �z ¼

qw

qz
;

gxy ¼
qv

qx
þ

qu

qy
; gyz ¼

qw

qy
þ

qv

qz
; gzx ¼

qu

qz
þ

qw

qx

9>>>=
>>>;
. (2)
2.
 The lateral displacement w has two components: bending component wb and shear component ws. Both the
components are functions of coordinates x, y and time t only:

wðx; y; tÞ ¼ wbðx; y; tÞ þ wsðx; y; tÞ. (3)
3.
 (a) In general, transverse normal stress sz is negligible in comparison with in-plane stresses sx and sy.
Therefore, for a linearly elastic isotropic material, stresses sx and sy are related to strains �x and �y by the
following constitutive relations:

sx ¼
E

ð1� m2Þ
ð�x þ m�yÞ; sy ¼

E

ð1� m2Þ
ð�y þ m�xÞ. (4)

(b) The shear stresses txy, tyz, tzx are related to shear strains gxy, gyz, gzx by the following constitutive
relations:

txy ¼ Ggxy; tyz ¼ Ggyz; tzx ¼ Ggzx. (5)
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The displacement u in x-direction consists of bending component ub and shear component us. Similarly, the
4.

displacement v in y-direction consists of bending component vb and shear component vs:

u ¼ ub þ us; v ¼ vb þ vs. (6)

(a) The bending component ub of displacement u and vb of displacement v are assumed to be analogous,
respectively, to the displacements u and v given by CPT. Therefore, the expression for ub and vb can be
given as

ub ¼ �z
qwb

qx
, (7)

vb ¼ �z
qwb

qy
. (8)

It may be noted that the displacement components ub, vb, and wb together do not contribute toward
shear stresses tzx and tyz.

(b) The shear component us of displacement u and the shear component vs of displacement v are such that:
(i) they give rise, in conjunction with ws, to the parabolic variations of shear stresses tzx and tyz across

the cross section of the plate in such a way that shear stresses tzx and tyz are zero at z ¼ �h=2 and at
h=2, and

(ii) their contribution toward strains �x, �y, and gxy is such that in the moments Mx, My, and Mxy there
is no contribution from the components us and vs.
3.2. Displacements, moments, shear forces in RPT

Based on the assumptions made in the preceding section, and going by the previous experience (Ref. [20]), it
is possible to write shear component us of displacements u, and shear component vs of displacements v as:

us ¼ h
1

4

z

h

� �
�

5

3

z

h

� �3� �
qws

qx
, (9)

vs ¼ h
1

4

z

h

� �
�

5

3

z

h

� �3� �
qws

qy
. (10)

Using expressions (3), and (6)–(10), one can write expressions for displacements u, v, w as:

uðx; y; z; tÞ ¼ �z
qwb

qx
þ h

1

4

z

h

� �
�

5

3

z

h

� �3� �
qws

qx
, (11)

vðx; y; z; tÞ ¼ �z
qwb

qy
þ h

1

4

z

h

� �
�

5

3

z

h

� �3� �
qws

qy
, (12)

wðx; y; tÞ ¼ wbðx; y; tÞ þ wsðx; y; tÞ. (13)

Using expressions for displacements (11)–(13) in strain–displacement relations (2), the expressions for
strains can be obtained:

�x ¼ �z
q2wb

qx2
þ h

1

4

z

h

� �
�

5

3

z

h

� �3� �
q2ws

qx2
, (14)

�y ¼ �z
q2wb

qy2
þ h

1

4

z

h

� �
�

5

3

z

h

� �3� �
q2ws

qy2
, (15)
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�z ¼ 0, (16)

gxy ¼ �2z
q2wb

qxqy
þ 2h

1

4

z

h

� �
�

5

3

z

h

� �3� �
q2ws

qxqy
, (17)

gyz ¼
5

4
� 5

z

h

� �2� �
qws

qy
, (18)

gzx ¼
5

4
� 5

z

h

� �2� �
qws

qx
. (19)

Using expressions for strains from (14) to (19) in constitutive relations (4) and (5), the expressions for
stresses can be obtained:

sx ¼ �
Ez

1� m2
q2wb

qx2
þ m

q2wb

qy2

� �
þ

Eh

1� m2
1

4

z

h

� �
�

5

3

z

h

� �3� �
q2ws

qx2
þ m

q2ws

qy2

� �
, (20)

sy ¼ �
Ez

1� m2
q2wb

qy2
þ m

q2wb

qx2

� �
þ

Eh

1� m2
1

4

z

h

� �
�

5

3

z

h

� �3� �
q2ws

qy2
þ m

q2ws

qx2

� �
, (21)

txy ¼ �
Ez

1� m2
ð1� mÞ

q2wb

qxqy
þ

Eh

1� m2
ð1� mÞ

1

4

z

h

� �
�

5

3

z

h

� �3� �
q2ws

qxqy
, (22)

tyz ¼
E

2ð1þ mÞ
5

4
� 5

z

h

� �2� �
qws

qy
, (23)

tzx ¼
E

2ð1þ mÞ
5

4
� 5

z

h

� �2� �
qws

qx
. (24)

The moments and shear forces are defined as

Mx

My

Mxy

Qx

Qy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

Z z¼h=2

z¼�h=2

sxz

syz

txyz

tzx

tyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

dz. (25)

Using expressions for stresses (20)–(24) in (25), expressions for moments Mx, My and Mxy and shear forces
Qx and Qy can be obtained. These expressions are:

Mx ¼ �D
q2wb

qx2
þ m

q2wb

qy2

� �
, (26)

My ¼ �D
q2wb

qy2
þ m

q2wb

qx2

� �
, (27)

Mxy ¼ �Dð1� mÞ
q2wb

qxqy
, (28)

Qx ¼
5Eh

12ð1þ mÞ
qws

qx
, (29)

Qy ¼
5Eh

12ð1þ mÞ
qws

qy
, (30)
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where the plate rigidity D is defined by

D ¼
Eh3

12ð1� m2Þ
. (31)

It may be noted that expressions for moments Mx, My and Mxy contain only wb as an unknown function.
Also, the expressions for shear forces Qx and Qy contain only ws as an unknown function.

3.3. Expressions for kinetic and strain energies

It should be noted that displacement w, given by Eq. (13), is not a function of z. As a result of this, normal
strain �z comes out to be zero. Therefore, for free vibration problem the expressions for kinetic energy T and
strain energy U for three-dimensional body can be written as:

T ¼

Z z¼h=2

z¼�h=2

Z y¼b

y¼0

Z x¼a

x¼0

1

2
r

qu

qt

� �2

þ
qv

qt

� �2

þ
qw

qt

� �2
" #

dxdy dz, (32)

U ¼

Z z¼h=2

z¼�h=2

Z y¼b

y¼0

Z x¼a

x¼0

1

2

sx�x þ sy�y þ txy gxy

þtyz gyz þ tzx gzx

" #
dxdydz. (33)

Using expressions (11)–(24) in Eqs. (32) and (33), expressions for kinetic energy and strain energy can be
written as:

T ¼
rh3

24

Z y¼b

y¼0

Z x¼a

x¼0

q
qt

qwb

qx

� �� �2
þ

q
qt

qwb

qy

� �� �2( )
dxdy

þ
rh3

2016

Z y¼b

y¼0

Z x¼a

x¼0

q
qt

qws

qx

� �� �2
þ

q
qt

qws

qy

� �� �2( )
dxdy

þ
rh

2

Z y¼b

y¼0

Z x¼a

x¼0

qwb

qt
þ

qws

qt

� 	2

dxdy, ð34Þ

U ¼
Eh3

24ð1� m2Þ

Z y¼b

y¼0

Z x¼a

x¼0

q2wb

qx2

� �2

þ
q2wb

qy2

� �2

þ 2m
q2wb

qx2

q2wb

qy2
þ 2ð1� mÞ

q2wb

qxqy

� �2
" #

dxdy

þ
5Eh

24ð1þ mÞ

Z y¼b

y¼0

Z x¼a

x¼0

qws

qx

� �2

þ
qws

qy

� �2
" #

dxdy

þ
Eh3

2016ð1� m2Þ

Z y¼b

y¼0

Z x¼a

x¼0

q2ws

qx2

� �2

þ
q2ws

qy2

� �2

þ 2m
q2ws

qx2

q2ws

qy2
þ 2ð1� mÞ

q2ws

qxqy

� �2
" #

dxdy.

ð35Þ

3.4. Obtaining governing equations, boundary conditions in RPT by using Hamilton’s principle

Governing differential equations and boundary conditions can be obtained using well-known Hamilton’s
principle Z t2

t1

dðT �UÞdt ¼ 0, (36)

where d indicates a variation w.r.t. x and y only; t1, t2 are values of time variable at the start and end of time
interval (in the context of Hamilton’s principle), respectively.
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Using expressions (34) and (35) in the preceding equation and integrating the equation by parts, taking into
account the independent variations of wb and ws, yields the governing differential equations and boundary
conditions.

3.4.1. Governing equations in RPT

The governing differential equations for free vibration of the plate are

Dr2r2wb �
rh3

12

q2

qt2
r2wb


 �
þ rh

q2

qt2
ðwb þ wsÞ ¼ 0, (37)

1

84
Dr2r2ws �

5Eh

12ð1þ mÞ
r2ws �

rh3

1008

q2

qt2
ðr2wsÞ þ rh

q2

qt2
ðwb þ wsÞ ¼ 0, (38)

where

r2 ¼
q2

qx2
þ

q2

qy2
. (39)

3.4.2. Boundary conditions in RPT

The boundary conditions of the plate are given as follows:
1.
 At corners (x ¼ 0; y ¼ 0), (x ¼ 0; y ¼ b), (x ¼ a; y ¼ 0), and (x ¼ a; y ¼ b) the following conditions hold:
(a) The condition involving wb (i.e. bending component of lateral displacement)

�D ð1� mÞ
q2wb

qxqy

� �
¼ 0 or wb is specified. (40)

(b) The condition involving ws (i.e. shear component of lateral displacement)

�D ð1� mÞ
q2ws

qxqy

� �
¼ 0 or ws is specified. (41)
2.
 On edges x ¼ 0 and a, the following conditions hold:
(a) The conditions involving wb (i.e. bending component of lateral displacement)

�D
q3wb

qx3
þ ð2� mÞ

q3wb

qxqy2

� �
þ

rh3

12

q2

qt2
qwb

qx

� �� �
¼ 0 or wb is specified, (42)

�D
q2wb

qx2
þ m

q2wb

qy2

� �
¼ 0 or

qwb

qx
is specified. (43)

(b) The conditions involving ws (i.e. shear component of lateral displacement)

5Eh

12ð1þ mÞ
qws

qx
�

1

84
D

q3ws

qx3
þ ð2� mÞ

q3ws

qxqy2

� �

þ
rh3

1008

q2

qt2
qws

qx

� �
¼ 0 or ws is specified, ð44Þ

�D
q2ws

qx2
þ m

q2ws

qy2

� �
¼ 0 or

qws

qx
is specified. (45)
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On edges y ¼ 0 and b, the following conditions hold:
3.
(a) The conditions involving wb (i.e. bending component of lateral displacement)

�D
q3wb

qy3
þ ð2� mÞ

q3wb

qx2qy

� �
þ

rh3

12

q2

qt2
qwb

qy

� �� �
¼ 0 or wb is specified, (46)

�D
q2wb

qy2
þ m

q2wb

qx2

� �
¼ 0 or

qwb

qy
is specified. (47)

(b) The conditions involving ws (i.e. shear component of lateral displacement)

5Eh

12ð1þ mÞ
qws

qy
�

1

84
D

q3ws

qy3
þ ð2� mÞ

q3ws

qx2qy

� �

þ
rh3

1008

q2

qt2
qws

qy

� �
¼ 0 or ws is specified, ð48Þ

�D
q2ws

qy2
þ m

q2ws

qx2

� �
¼ 0 or

qws

qy
is specified. (49)
4. Comments on RPT
1.
 With respect to governing equations, following can be noted:
(a) In RPT, there are two governing equations [Eqs. (37) and (38)]. Both the governing equations are

fourth-order partial differential equations.
(b) The governing equations involve only two unknown functions (i.e. bending component wb and shear

component ws of lateral deflection).
Even theories of Reissner [1], Mindlin [3], which are first-order shear deformation theories and are
considered to be simple ones, involve three unknown functions.
It is interesting to note that Green also obtained governing equations for plate involving two unknown
functions. The equations obtained by Green are quoted in Ref. [27, pp. 168–170]. But, Green’s work
was based on Reissner’s approach and, therefore, the transverse shear stresses and shear strains do not
exactly satisfy the constitutive relations. Whereas, in contrast, in RPT, these constitutive relations are
exactly satisfied.

(c) It should be noted here that certain assumptions of RPT (assumptions 4(bi) and 4(bii)) are quite
different from those made in the work of Senthilnathan et al. [26]. Therefore, bending moments in RPT
(expressions (26)–(28)) have no contribution from shearing component ws, whereas it is not so in the
theory proposed by Senthilnathan et al.
It is emphasized here that governing equations of RPT are only inertial coupling, and there is no elastic
coupling at all. In contrast, governing equations of the theory proposed by Senthilnathan et al. are
elastically as well as inertially coupled.
Additionally, an important point needs to be noted here is, shear forces [expressions (29) and (30)], of
RPT can be written as

Qx ¼
5

6
Gh

qws

qx
; Qy ¼

5

6
Gh

qws

qy
.

It can be seen that the shear correction factor proposed by Reissner [2] is 5
6
and by Mindlin [3] is p2=12 (a

value is very close to Reissner’s 5
6
) is coming out automatically in the present theory. Whereas, if one

works it out for the theory proposed by Senthilnathan et al., it comes out as 2
3
. Shear correction factor

directly affects the shear contribution and thus accuracy.
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2.
 With respect to boundary conditions, following can be noted:
(a) There are two conditions per corner.

i. One condition is stated in terms of wb and its derivatives only [i.e. condition (40)].
ii. The remaining condition is stated in terms of ws and its derivatives only [i.e. condition (41)].

(b) There are four boundary conditions per edge.
i. Two conditions are stated in terms of wb and its derivatives only [e.g., in the case of edge x ¼ 0,
conditions (42) and (43)].

ii. The remaining two conditions are stated in terms of ws and its derivatives only [e.g., in the case of
edge x ¼ 0, conditions (44) and (45)].
3.
 Some entities of RPT (e.g., a governing equation, moment expressions, boundary conditions) have strong
similarity with those of CPT.
(a) The following entities of RPT are identical, save for the appearance of the subscript, to the

corresponding entities of the CPT:
i. Moments Mx, My, Mxy [i.e. expressions (26)–(28)].
ii. Corner boundary condition [i.e. condition (40)].
iii. Edge boundary conditions [i.e. conditions (42), (43), (46) and (47)].

The bending component wb of lateral displacement figures in the just mentioned entities of RPT,
whereas lateral displacement w figures in the corresponding equations of the CPT.

(b) One of the two governing Equations [i.e. Eq. (37)] has strong similarity with the governing equation of
CPT. (If in Eq. (37) the term q2ws=qt2 is ignored, and if wb is replaced by w, then the resulting equation
is identical to the governing equation of CPT).
It should be noted here that, as mentioned previously (assumption 4(a)), the bending component wb of
transverse displacement, in case of RPT, is analogous to the transverse displacement given by CPT. Lee and
Wang [24] discussed an important issue about the use of deflection components wb and ws in case of beam
theory, one-dimensional counterpart of plate theory and deduced that the Timoshenko bending component
wb is, in general, not the same as the Euler–Bernoulli deflection w.
In respect of boundary conditions, it is to be noted that wb together with ws must satisfy the physical
displacement at the boundary.

5. RPT-Variant

It is possible to introduce simplification in RPT and yet retain very good accuracy. A simplified theory RPT-
Variant can be obtained from RPT. This involves identifying and then ignoring terms of marginal utility from
the expressions of strain energy and kinetic energy associated with RPT.

Assumptions of RPT-Variant are same as those of RPT. Expressions for displacements, strains, stresses, moments,
shear forces in RPT-Variant are same as those of RPT. That is, expressions (11)–(30) are valid in RPT-Variant also.

The following needs to be noted:
1.
 The displacement u has two components ub and us

(u, ub, us are given by expressions (11), (7), and (9), respectively).

2.
 The displacement v has two components vb and vs

(v, vb, vs are given by expressions (12), (8), and (10), respectively).

3.
 (a) In the total kinetic energy, the energy component involving rotatory inertia constitutes only a small

component.
(b) From Eq. (32), expressions (11) and (12), it can be seen that in the kinetic energy, the rotatory inertia
component arises because of the following terms:

1

2
r

qu

qt

� �2

;
1

2
r

qv

qt

� �2

.
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As the displacement bending components ub, vb are, in general, larger in magnitude than the
corresponding displacement shear components us, vs, respectively, the major contribution to rotatory
inertia comes from terms arising out of displacement bending components ub, vb. Whereas, the
contribution to rotatory inertia from terms arising out of displacement shear components us, vs is
insignificant.
Therefore, in expression (34) for kinetic energy T, the contribution to rotatory inertia by the following term
can safely be ignored:

rh3

2016

Z y¼b

y¼0

Z x¼a

x¼0

q
qt

qws

qx

� �� �2
þ

q
qt

qws

qy

� �� �2( )
dxdy.
4.
 (a) The displacement components us, vs do not contribute towards moments Mx, My, Mxy (given by
expressions (26)–(28), respectively).
As a result, the moment expressions do not contain any derivative of shear displacement component ws of
lateral displacement.
Therefore, in the bending energy component of the strain energy, the contribution from terms involving ws

is insignificant.
(b) From Eq. (33), it can be seen that in the strain energy U, there is bending energy component involving
products of stresses sx, sy and txy with corresponding strains �x, �y and gxy. Such products contain entities
which involve shear displacement component ws of lateral displacement. Any term containing such entities
contributes insignificantly to the strain energy.
Therefore, in expression (35) for strain energy U, the contribution to the strain energy by the following term
can safely be ignored:

Eh3

2016ð1� m2Þ

Z y¼b

y¼0

Z x¼a

x¼0

q2ws

qx2

� �2

þ
q2ws

qy2

� �2

þ 2m
q2ws

qx2

q2ws

qy2
þ 2ð1� mÞ

q2ws

qxqy

� �2
" #

dxdy.

Hence, expressions for kinetic energy T and strain energy U can be expressed with very good accuracy as
follows:

T �
rh3

24

Z y¼b

y¼0

Z x¼a

x¼0

q
qt

qwb

qx

� �� �2
þ

q
qt

qwb

qy

� �� �2( )
dxdyþ

rh

2

Z y¼b

y¼0

Z x¼a

x¼0

qwb

qt
þ

qws

qt

� �2
dxdy, (50)

U �
Eh3

24ð1� m2Þ

Z y¼b

y¼0

Z x¼a

x¼0

q2wb

qx2

� �2

þ
q2wb

qy2

� �2

þ 2m
q2wb

qx2

q2wb

qy2
þ 2ð1� mÞ

q2wb

qxqy

� �2
" #

dxdy

þ
5Eh

24ð1þ mÞ

Z y¼b

y¼0

Z x¼a

x¼0

qws

qx

� �2

þ
qws

qy

� �2
" #

dxdy. ð51Þ

5.1. Obtaining governing equations, boundary conditions in RPT-Variant by using Hamilton’s principle

Applying the Hamilton’s principle as stated in Eq. (36), and using approximate expressions for
kinetic energy T and strain energy U [i.e. expressions (50) and (51)], the governing differential
equations and boundary conditions in respect of RPT-Variant can be obtained for free vibration of the
plate.
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5.1.1. Governing equations in RPT-Variant

Dr2r2wb �
rh3

12

q2

qt2
ðr2wbÞ þ rh

q2wb

qt2
þ

q2ws

qt2

� �
¼ 0, (52)

5Eh

12ð1þ mÞ
r2ws � rh

q2wb

qt2
þ

q2ws

qt2

� �
¼ 0. (53)

5.1.2. Boundary conditions in RPT-Variant

The boundary conditions of the plate are given as follows:
1.
 At corners (x ¼ 0; y ¼ 0), (x ¼ 0; y ¼ b), (x ¼ a; y ¼ 0) and (x ¼ a; y ¼ b) the following holds:

�D ð1� mÞ
q2wb

qxqy

� �
¼ 0 or wb is specified. (54)
2.
 On edges x ¼ 0 and a, the following conditions hold:
(a) The conditions involving wb (i.e. bending component of lateral displacement)

�D
q3wb

qx3
þ ð2� mÞ

q3wb

qxqy2

� �
þ

rh3

12

q2

qt2
qwb

qx

� �� �
¼ 0 or wb is specified, (55)

�D
q2wb

qx2
þ m

q2wb

qy2

� �
¼ 0 or

qwb

qx
is specified. (56)

(b) The condition involving ws (i.e. shear component of lateral displacement)

qws

qx
¼ 0 or ws is specified. (57)
3.
 On edges y ¼ 0 and b, the following conditions hold:
(a) The conditions involving wb (i.e. bending component of lateral displacement)

�D
q3wb

qy3
þ ð2� mÞ

q3wb

qx2qy

� �
þ

rh3

12

q2

qt2
qwb

qy

� �� �
¼ 0 or wb is specified, (58)

�D
q2wb

qy2
þ m

q2wb

qx2

� �
¼ 0 or

qwb

qy
is specified. (59)

(b) The condition involving ws (i.e. shear component of lateral displacement)

qws

qy
¼ 0 or ws is specified. (60)
6. Comments on RPT-Variant
1.
 With respect to governing equations, following is to be noted:
(a) In RPT-Variant, there are two governing equations.

i. Eq. (52) is a fourth-order partial differential equation, whereas
ii. Eq. (53) is a second-order partial differential equation.
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(b) The governing equations involve only two unknown functions (i.e. bending component wb and shear
component ws of lateral deflection).
Even theories of Reissner [2], Mindlin [3], which are first-order shear deformation theories and are
considered to be simple ones, involve three unknown functions.

(c) RPT-Variant and, as has been noted earlier, RPT are the only theories, to the best knowledge of the
authors, wherein in the governing equations, there is only inertial coupling, and there is no elastic
coupling at all.
2.
 With respect to boundary conditions, following is to be noted:
(a) In RPT-Variant, there are three boundary conditions per edge.

Out of these, two conditions [e.g., in case of edge x ¼ 0, Eqs. (55) and (56)] are stated in terms of wb

and its derivatives only.
The remaining one condition [e.g., in case of edge x ¼ 0, Eq. (57)] is stated in terms of ws and its
derivative only.

(b) In RPT-Variant, there is one condition per corner, stated in terms of wb and its derivatives only
[Eq. (54)].
3.
 Some entities of RPT-Variant have strong similarity with those of CPT:
(a) The following entities of RPT-Variant are identical, save for the appearance of the subscript, to the

corresponding entities of the CPT:
i. Expressions for moments Mx, My, Mxy [i.e. expressions (26)–(28)].
ii. Corner boundary condition [i.e. condition (54)].
iii. Edge boundary conditions involving bending component of lateral displacement [i.e. conditions

(55), (56), (58) and (59)].

The bending component wb of lateral displacement figures in the just mentioned equations
of RPT-Variant, whereas lateral displacement w figures in the corresponding equations of the
CPT.

(b) The governing Eq. (52), is very similar to the governing equation of CPT. [If in Eq. (52) the term
q2ws=qt2 is ignored, and if wb is replaced by w, then the resulting equation is identical to the governing
equation of CPT].
4.
 The governing equations of RPT-Variant are somewhat analogous to those obtained by Reissner’s theory
[2] and Mindlin’s theory [3]. However, the following points are noteworthy:
(a) The governing equations of RPT-Variant involve only two unknown functions (i.e. wb and ws), as

against three in case of Reissner’s theory [2] and Mindlin’s theory [3]. (Though, this point has already
been stated in preceding item 1(b), it is specifically mentioned here again so as to compare RPT-
Variant with Reissner’s theory and Mindlin’s theory.)

(b) Because of strong similarity to the CPT, equations of RPT-Variant are easy to deal with.
(c) Moreover, in Mindlin’s approach and Reissner’s approach, the transverse shear stresses and shear
strains do not exactly satisfy the constitutive relations. Whereas, in RPT-Variant, these constitutive
relations are exactly satisfied.
7. Illustrative example: free vibrations of a simply-supported rectangular plate

An illustrative example would be taken up to demonstrate the effectiveness of RPT and RPT-Variant.
Consider a plate (of length a, width b, and thickness h) of homogeneous isotropic material. The plate

occupies (in 0–x–y–z right-handed Cartesian coordinate system) a region defined by Eq. (1). The plate has
simply-supported boundary conditions at all four edges x ¼ 0, a, and y ¼ 0, b. Free vibrations of such a plate
is also studied in other references (e.g., Refs. [12,16,28,29]).

7.1. Application of RPT for the illustrative example

RPT would now be applied to the illustrative example.
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7.1.1. Governing equations for the illustrative example when RPT is used

The governing equations are the same as given by Eqs. (37) and (38).

7.1.2. Boundary conditions for the illustrative example when RPT is used

The boundary conditions of the plate are given as follows:
1.
 At corners (x ¼ 0; y ¼ 0), (x ¼ 0; y ¼ b), (x ¼ a; y ¼ 0), and (x ¼ a; y ¼ b) the following conditions
hold:

wb ¼ 0, (61)

ws ¼ 0. (62)
2.
 On edges x ¼ 0 and a, the following conditions hold:

wb ¼ 0, (63)

�D
q2wb

qx2
þ m

q2wb

qy2

� �
¼ 0, (64)

ws ¼ 0, (65)

�D
q2ws

qx2
þ m

q2ws

qy2

� �
¼ 0. (66)
3.
 On edges y ¼ 0 and b, the following conditions hold:

wb ¼ 0, (67)

�D
q2wb

qy2
þ m

q2wb

qx2

� �
¼ 0, (68)

ws ¼ 0, (69)

�D
q2ws

qy2
þ m

q2ws

qx2

� �
¼ 0. (70)

7.1.3. Solution of the illustrative example when RPT is used

The following displacement functions wb and ws satisfy the boundary conditions (61)–(70):

wb ¼
X1
m¼1

X1
n¼1

W bmn
sin

mpx

a

� �
sin

npy

b

� �
sinðomntÞ, (71)

ws ¼
X1
m¼1

X1
n¼1

W smn
sin

mpx

a

� �
sin

npy

b

� �
sinðomntÞ, (72)

where W bmn
, W smn

are constants and omn is the circular frequency of vibration.
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Using expressions (71) and (72) in the governing equations (37) and (38), one obtains following two
equations for free vibration of plate:

D
mp
a

� �4
þ 2

mp
a

� �2 np
b

� �2
þ

np
b

� �4� �

�o2
mn

rh3

12

mp
a

� �2
þ

np
b

� �2� 	
þ rh

� �
8>>><
>>>:

9>>>=
>>>;

W bmn
� fo2

mnrhgW smn
¼ 0, (73)

fo2
mnrhgW bmn

�

D

84

mp
a

� �4
þ 2

mp
a

� �2 np
b

� �2
þ

np
b

� �4� �

þ
5Dð1� mÞ

h2

mp
a

� �2
þ

np
b

� �2� �

�o2
mn

rh3

1008

mp
a

� �2
þ

np
b

� �2� 	
þ rh

� �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

W smn
¼ 0. (74)

A necessary and sufficient condition for the existence of a non-trivial solution for constants W bmn
, W smn

is that
the determinant of the coefficient matrix is zero. This requirement gives following quadratic characteristic
equation in o2

mn for RPT, which gives two eigenfrequencies for every combination of m and n. Corresponding
eigenvectors can be obtained. The characteristic equation is as follows:

o2
mnrh2

G

� �2

ð1� mÞ2
1

336
amn þ

85

28

� �� �

�
o2

mnrh2

G

� �
ð1� mÞ

1

84
a2mn

þ
85

14
þ

5ð1� mÞ
2

� �
amn

þ30ð1� mÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

2
6666664

3
7777775
þ

1

84
a3mn þ 5ð1� mÞa2mn

� �

¼ 0 for m ¼ 1; 2; . . . ;1 and n ¼ 1; 2; . . . ;1, ð75Þ

where

amn ¼
mph

a

� �2

þ
nph

b

� �2

.

From Eq. (75), one gets two frequencies for each combination of m and n. Out of these two frequencies, the
lower one is associated with predominantly bending mode, whereas the higher one is associated with
predominantly shear mode.

The numerical results obtained, when h=a ¼ 0:1, for square plate (b=a ¼ 1), rectangular plate (having
b=a ¼

ffiffiffi
2
p

) are presented in Tables 1–3. The tables also present solutions obtained by other theories.

7.2. Application of RPT-Variant for the illustrative example

RPT-Variant would now be applied to the illustrative example.

7.2.1. Governing equations for the illustrative example when RPT-Variant is used

The governing equations are the same as given by Eqs. (52) and (53).
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7.2.2. Boundary conditions for the illustrative example when RPT-Variant is used

The boundary conditions of the plate are given as follows:
1.
 At corners (x ¼ 0; y ¼ 0), (x ¼ 0; y ¼ b), (x ¼ a; y ¼ 0), and (x ¼ a; y ¼ b) the following conditions hold:

wb ¼ 0. (76)
2.
 On edges x ¼ 0 and a, the following conditions hold:

wb ¼ 0, (77)

�D
q2wb

qx2
þ m

q2wb

qy2

� �
¼ 0, (78)

ws ¼ 0. (79)
3.
 On edges y ¼ 0 and b, the following conditions hold:

wb ¼ 0, (80)

�D
q2wb

qy2
þ m

q2wb

qx2

� �
¼ 0, (81)

ws ¼ 0. (82)
7.2.3. Solution of the illustrative example when RPT-Variant is used

The same displacement functions wb and ws, used earlier and given by Eqs. (71) and (72), respectively,
satisfy the boundary conditions (76)–(82). Using these displacement functions in governing equations (52) and
(53), one gets the following two equations for free vibration of plate:

D
mp
a

� �4
þ 2

mp
a

� �2 np
b

� �2
þ

np
b

� �4� �

�o2
mn

rh3

12

mp
a

� �2
þ

np
b

� �2� 	
þ rh

� �
8>>>><
>>>>:

9>>>>=
>>>>;

W bmn
� fo2

mnrhgW smn
¼ 0, (83)

fo2
mnrhgW bmn

�
5Dð1� mÞ

h2

mp
a

� �2
þ

np
b

� �2� �
� o2

mnrh

� 	
W smn

¼ 0. (84)

Following the same procedure as that for RPT, we get the characteristic equation for RPT-Variant, which
gives free vibration frequencies, as follows:

o2
mnrh2

G

� �2

½3ð1� mÞ2� �
o2

mnrh2

G

� �
17� 5m

2

� �
amnð1� mÞ þ 30ð1� mÞ2

� �
þ ½5ð1� mÞa2mn� ¼ 0

for m ¼ 1; 2; . . . ;1 and n ¼ 1; 2; . . . ;1, ð85Þ

where

amn ¼
mph

a

� �2

þ
nph

b

� �2

.

From Eq. (85), one gets two frequencies for each combination of m and n. Out of these two frequencies, the
lower one is associated with predominantly bending mode, whereas the higher one is associated with
predominantly shear mode.
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The numerical results obtained, when h=a ¼ 0:1, for square plate (b=a ¼ 1), rectangular plate (having
b=a ¼

ffiffiffi
2
p

) are presented in Tables 1–3. The tables also present solutions obtained by other theories.

8. Discussion on results

Results using RPT and RPT-Variant are tabulated in Tables 1–3. The tables also present solutions obtained
using exact theory [16], Reddy’s theory (termed as ‘higher-order shear deformation plate theory’ (HSDPT) in
Refs. [12,28]), Mindlin’s theory (termed as ‘first-order shear deformation plate theory’ (FSDPT) in Refs.
[12,28]) and CPT taking into account rotary inertia (as reported in Refs. [12,28]).

It needs to be mentioned here that the non-dimensional frequency o as defined in Ref. [28] has a misprint in
it. Reddy, in Ref. [12], has given the proper definition of non-dimensional frequency fo ¼ ohð

ffiffiffiffiffiffiffiffiffi
r=G

p
Þg. Also,

the non-dimensional frequencies for rectangular plate (having b=a ¼
ffiffiffi
2
p

) as reported by Reddy [12], Reddy
and Phan [28] and by Lee and Reismann [31], have typographical errors in the placement of decimal symbol
and this can be verified by using results later given by Wang et al. [30]. However, in interpreting the results
given in Ref. [30], it needs to be noted that, in that reference, the definition of non-dimensional frequency
involves plate rigidity D (instead of use of shear modulus of elasticity G in Refs. [12,16,28,31]).

In Tables 1–3, the % error quoted against a particular theory is calculated with reference to the exact theory
of Ref. [16].

Also, results quoted are in ascending order of frequencies. The frequency indicated, when m ¼ 1 and n ¼ 1,
is the fundamental frequency.

In Table 1, results for predominantly bending mode frequencies for a square plate (b=a ¼ 1, h=a ¼ 0:1) are
given.

In Table 2, results for predominantly bending mode frequencies for a rectangular plate (b=a ¼
ffiffiffi
2
p

,
h=a ¼ 0:1) are given.

In Table 3, results for predominantly shear mode frequencies for a square plate (b=a ¼ 1, h=a ¼ 0:1) are given.
The following observations can be made:
1.
 In respect of predominantly bending mode frequencies, the following can be said from Tables 1 and 2:
(a) RPT, for both square and rectangular plates, gives very good accuracy (e.g., for the square plate, for a

mode when m ¼ 4 and n ¼ 4, the error is �0:96%; and for rectangular plate, for a mode when m ¼ 2
and n ¼ 5, the error is �0:68%).
Whereas, Reddy’s theory gives marginally accurate results than RPT (e.g., for the square plate, for a
mode when m ¼ 4 and n ¼ 4, the error is �0:39%; and for rectangular plate, for a mode when m ¼ 2
and n ¼ 5, the error is �0:38%).
It should be noted that RPT involves only two unknown functions and two differential equations as
against five unknown functions and five differential equations in case of Reddy’s theory.
Moreover, in RPT, both the differential equations are only inertially coupled and there is no elastic
coupling; and, therefore, the equations are easier to solve.
Whereas, in Reddy’s theory, all the five differential equations are inertially as well as elastically coupled,
and therefore, these equations are difficult to solve.
CPT results are not satisfactory (e.g., for the square plate, for a mode when m ¼ 4 and n ¼ 4, the error
is 25:96%; and for rectangular plate, for a mode when m ¼ 2 and n ¼ 5, the error is 16:43%).
CPT involves use of only one unknown function and only one differential equation. Compared to CPT,
use of RPT involves only one additional function and one additional number of differential equation.
But, when RPT is used, gain in accuracy of results is substantial.

(b) RPT-Variant, for both square and rectangular plates, gives good accuracy (e.g., for the square plate, for
a mode when m ¼ 4 and n ¼ 4, the error is �1:15%; and for rectangular plate, for a mode when m ¼ 2
and n ¼ 5, the error is �0:75%).
Incidentally, though Mindlin’s theory also gives more or less same results as given by RPT-Variant, it
should be noted that
i. RPT-Variant involves only two unknown functions and two differential equations as against three
unknown functions and three differential equations in case of Mindlin’s theory.
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Table 1

Comparison of non-dimensional natural predominantly bending mode frequencies omn of simply-supported isotropic square plate

omn ¼ omnh
ffiffiffiffiffiffiffiffiffi
r=G

p
; h=a ¼ 0:1, b=a ¼ 1:0

m n Non-dimensional natural frequency omn and corresponding % error (quoted in brackets)

EXACT [28] Reddy [28] Mindlin [28] CPT [28] RPT RPT-Variant

1 1 0.0932 0.0931 0.0930 0.0955 0.0930 0.0930

(0.00) (�0.11) (�0.22) (2.47) (�0.22) (�0.22)

1 2 0.2226a 0.2222 0.2219 0.2360 0.2220 0.2219

(0.00) (�0.18) (�0.32) (6.02) (�0.27) (�0.32)

2 2 0.3421 0.3411 0.3406 0.3732 0.3406 0.3406

(0.00) (�0.29) (�0.44) (9.09) (�0.44) (�0.44)

1 3 0.4171 0.4158 0.4149 0.4629 0.4151 0.4149

(0.00) (�0.31) (�0.53) (10.98) (�0.48) (�0.53)

2 3 0.5239 0.5221 0.5206 0.5951 0.5208 0.5206

(0.00) (�0.34) (�0.63) (13.02) (�0.59) (�0.63)

1 4 — 0.6545 0.6520 0.7668 0.6525 0.6520

— — — — — —

3 3 0.6889 0.6862 0.6834 0.8090 0.6840 0.6834

(0.00) (�0.39) (�0.80) (17.43) (�0.71) (�0.80)

2 4 0.7511 0.7481 0.7446 0.8926 0.7454 0.7447

(0.00) (�0.40) (�0.87) (18.84) (�0.76) (�0.85)

3 4 — 0.8949 0.8896 1.0965a 0.8908 0.8897

— — — — — —

1 5 0.9268 0.9230 0.9174 1.1365 0.9187 0.9174

(0.00) (�0.41) (�1.01) (22.63) (�0.87) (�1.01)

2 5 — 1.0053a 0.9984 1.2549 1.0001 0.9984

— — — — — —

4 4 1.0889 1.0847 1.0764 1.3716 1.0785 1.0764

(0.00) (�0.39) (�1.15) (25.96) (�0.96) (�1.15)

3 5 — 1.1361 1.1268 1.4475 1.1292 1.1269

— — — — — —

% error ¼
value obtained by a theory

corresponding value by exact theory
� 1

� �
� 100.

— against an entry indicates that results/data are not available.
aConverted in the present non-dimensional form from results quoted in Ref. [30] (as the corresponding results in Ref. [28] have some

misprints).

R.P. Shimpi, H.G. Patel / Journal of Sound and Vibration 296 (2006) 979–999 995
ii. unlike Mindlin’s theory, RPT-Variant satisfies:
A. shear stress free boundary conditions,
B. constitutive relations in respect of transverse shear stresses and strains (and, therefore, does not

require shear correction factor).
(c) The following interesting observation can be made from Tables 1 and 2: Frequencies for predominantly

bending modes obtained by all the theories, mentioned in the tables, with the exception of CPT, are
lower than the corresponding frequencies obtained by exact theory.
The present authors are unable to offer reasons for this observation. Apparently, to the best knowledge
of the authors, there are no discussions in the literature about such observations in respect of Mindlin’s
theory and Reddy’s theory.
2.
 RPT has two variables in displacement function so we get two frequencies for every combination of m and
n. Lower one is predominantly bending mode and other is predominantly shear mode. These predominantly
shear mode frequencies are very high, and, are important for shear wave studies.
Table 3 presents predominantly shear mode frequencies for square plate, obtained by RPT, RPT-Variant,
Mindlin’s theory (as reported in Ref. [16]), exact results by Srinivas [16]. Reddy’s theory can give five
frequencies for every combination of m and n, but in Refs. [12,28] predominantly shear mode frequencies
are not given.
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Table 2

Comparison of non-dimensional natural predominantly bending mode frequencies omn of simply-supported isotropic rectangular plate

omn ¼ omnh
ffiffiffiffiffiffiffiffiffi
r=G

p
; h=a ¼ 0:1, b=a ¼

ffiffiffi
2
p

m n Non-dimensional natural frequency omn and corresponding % error (quoted in brackets)

EXACT [30]a Reddy [30]a Mindlin [30]a CPT [30]a RPT RPT-Variant

1 1 0.0704 0.07038 0.07036 0.07180 0.07036 0.07036

(0.00) (�0.03) (�0.06) (1.99) (�0.06) (�0.06)

1 2 0.1376 0.13738 0.13729 0.14273 0.1373 0.13729

(0.00) (�0.16) (�0.23) (3.73) (�0.22) (�0.23)

2 1 0.2018 0.20141 0.20123 0.21281 0.20124 0.20123

(0.00) (�0.19) (�0.28) (5.46) (�0.28) (�0.28)

1 3 0.2431 0.24263 0.24235 0.25908 0.24238 0.24236

(0.00) (�0.19) (�0.31) (6.57) (�0.30) (�0.30)

2 2 0.2634 0.26283 0.26250 0.28207 0.26254 0.26251

(0.00) (�0.22) (�0.34) (7.09) (�0.33) (�0.34)

2 3 0.3612 0.36013 0.35948 0.39575 0.35957 0.35948

(0.00) (�0.30) (�0.48) (9.57) (�0.45) (�0.48)

1 4 0.3800 0.37891 0.37818 0.41822 0.37828 0.37818

(0.00) (�0.29) (�0.48) (10.05) (�0.45) (�0.48)

3 1 0.3987 0.39748 0.39666 0.44062 0.39678 0.39667

(0.00) (�0.31) (�0.51) (10.51) (�0.48) (�0.51)

3 2 0.4535 0.45198 0.45089 0.50729 0.45106 0.45090

(0.00) (�0.34) (�0.58) (11.86) (�0.54) (�0.57)

2 4 0.4890 0.48737 0.48608 0.55133 0.48629 0.48609

(0.00) (�0.33) (�0.60) (12.75) (�0.55) (�0.60)

3 3 0.5411 0.53915 0.53754 0.61680 0.53782 0.53754

(0.00) (�0.36) (�0.66) (13.99) (�0.61) (�0.66)

1 5 0.5411 0.53915 0.53754 0.61680 0.53782 0.53754

(0.00) (�0.36) (�0.66) (13.99) (�0.61) (�0.66)

2 5 0.6409 0.63846 0.63609 0.74563 0.63654 0.63610

(0.00) (�0.38) (�0.75) (16.43) (�0.68) (�0.75)

% error ¼
value obtained by a theory

corresponding value by exact theory
� 1

� �
� 100.

aConverted in the present non-dimensional form from results quoted in Ref. [30].
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For predominantly shear mode frequencies also, both RPT and RPT-Variant give good accuracy in results
(e.g., for the square plate, for a mode when m ¼ 4 and n ¼ 4, in case of RPT the error is 2:45%, and in case
of RPT-Variant the error is 2:86%). In case of Mindlin’s theory, the corresponding error is 2.47%.
Table 3 shows that Mindlin’s theory gives marginally more accuracy than RPT for some lower shear modes
up-to the mode wherein m ¼ 2 and n ¼ 3. But for higher shear modes RPT gives marginally improved
results over Mindlin’s theory. The reason can be attributed to the particular value of shear correction factor
used in Mindlin’s theory. It should be noted that both RPT as well as RPT-Variant do not require shear
correction factor.

9. Concluding remarks

In this paper, two variable refined plate theory (RPT) has been applied for free vibrations analysis of
isotropic plate. Its simplified version (RPT-Variant) is also presented.
1.
 The following points need to be noted in respect of RPT:
(a) The theory is variationally consistent and use of the theory results in two fourth-order govern-

ing differential equations, which are only inertially coupled and there is no elastic coupling at all.
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Table 3

Comparison of non-dimensional natural predominantly shear mode frequencies omn of simply-supported isotropic square plate

omn ¼ omnh
ffiffiffiffiffiffiffiffiffi
r=G

p
; h=a ¼ 0:1, b=a ¼ 1:0

m n Non-dimensional natural frequency omn and corresponding % error (quoted in brackets)

EXACT [16] Mindlin [16] RPT RPT-Variant

1 1 3.2465 3.25380 3.25552 3.27411

(0.00) (0.23) (0.28) (0.85)

1 2 3.3933 3.41120 3.41250 3.43102

(0.00) (0.53) (0.57) (1.11)

2 2 3.5298 3.5580 3.55894 3.57742

(0.00) (0.80) (0.83) (1.35)

1 3 3.6160 3.65100 3.65173 3.67017

(0.00) (0.97) (0.99) (1.50)

2 3 3.7393 3.78420 3.78473 3.80317

(0.00) (1.20) (1.22) (1.71)

1 4 — — 3.95421 3.97075

— — — —

3 3 3.9310 3.99260 3.99280 4.01113

(0.00) (1.57) (1.57) (2.04)

2 4 4.0037 4.07200 4.07195 4.09026

(0.00) (1.71) (1.70) (2.16)

3 4 — — 4.26131 4.27953

— — — —

1 5 4.2099 4.29820 4.29786 4.31607

(0.00) (2.10) (2.09) (2.52)

2 5 — — 4.40518 4.42334

— — — —

4 4 4.4013 4.50980 4.50923 4.52735

(0.00) (2.47) (2.45) (2.86)

3 5 — — 4.57694 4.59502

— — — —

% error ¼
value obtained by a theory

corresponding value by exact theory
� 1

� �
� 100:

— against an entry indicates that results/data are not available.
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RPT-Variant also shares these features. No other theory, to the best of the knowledge of the authors,
has these feature.

(b) Number of unknown functions involved in the theory is only two. Even in the Mindlin’s theory (a first-
order shear deformation theory), three unknown functions are involved.

(c) The theory has strong similarity with the classical plate theory in many aspects (in respect of a
governing equation, boundary conditions, moment expressions).

(d) i. The theory assumes displacements such that transverse shear stress variation is realistic (giving shear
stress free surfaces and parabolic variation of shear stress across the thickness).
ii. Constitutive relations in respect of shear stresses and shear strains are satisfied (and, therefore, shear
correction factor is not required).

(e) The CPT comes out as a special case of formulations. Therefore, the finite elements based on the theory
will be free from shear locking.

(f) The results obtained using RPT is found to be in excellent agreement with the exact theory. The gain in
accuracy obtained by using Reddy’s theory (which is more involved than the RPT) is only marginal.
2.
 Whatever has been just mentioned about RPT, is true for RPT-Variant as well, except for the following
specifics:
(a) It is derived from RPT by not taking into account entities of marginal utility. As a result, use of the

theory results in having two differential equations, wherein one is a fourth-order differential equation,
and another one is a second-order differential equation.
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(b) The results obtained using RPT-Variant is found to be in very good agreement with the exact theory.
The gain in accuracy obtained by using Mindlin’s theory (which is more involved than the RPT) is only

marginal.
In conclusion, it can be said that for vibration problems, RPT and RPT-Variant can be successfully utilized
for simplicity as well as accuracy.
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